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[1] The experiments have been conducted to investigate the effect of strain amplitude and
frequency on the compressional and shear wave attenuation in quartz samples of three
types: the intact quartz, fractured quartz, and smoky quartz. The measurements were
performed using the reflection method on a pulse frequency of 1 MHz with changing
strain in the range 0.3 � e � 2.0 mstrain under a confining pressure of 10 MPa and at
ambient temperature. The essential difference in amplitude-frequency characteristics
of wave attenuation in three quartz types has been detected. The intact quartz shows the
more ‘‘simple’’ behavior in comparison with the fractured and smoky quartz. The
attenuation (the inverse quality factor Q) depends on strain amplitude as Q�1(e) � e

�n,
where n ffi 0.005–0.085, with the greatest decrease in the smoky and fractured quartz
reaching of about 15%. Relaxation spectra of attenuation are presented in the frequency
range from 0.4 to 1.4 MHz. The dependence Qp

�1(f) � f�1.2 characterizes the intact and
fractured quartz, whereas the smoky quartz has the relaxation peak. The dependence
Qs
�1(f) � f�0.84 presents S wave relaxation spectrum in the intact quartz; in the fractured

and smoky quartz, the attenuation peaks take place. The strain amplitude variation
exerts influence on the relaxation strength, the peak frequency, and the width of the
relaxation peak. Such behavior of attenuation can be explained by a joint action of
viscoelastic and microplastic mechanisms. These results can be considered as a
contribution for providing the experimental background to the theory of attenuation in
rocks. They can also be used in solving applied problems in material science, seismic
prospecting, etc.
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1. Introduction

[2] The wave attenuation is caused by the dissipation of
strain energy as seismic waves propagate through an an-
elastic medium. The knowledge of the anelastic properties
of minerals is important for understanding attenuation
mechanisms in rocks. One of the manifestations of anelas-
ticity is the dependence of seismic parameters on strain
amplitude. The influence of strain amplitude on wave
velocity and attenuation in rocks was studied by many
researchers [Mavko, 1979; Johnston and Toksoz, 1980b;
Winkler et al., 1979; Stewart et al., 1983; Murphy et al.,
1986; Tutuncu et al., 1994a, 1994b, 1998; Johnson et al.,
1996; Ostrovsky and Johnson, 2001]. A majority of results
was obtained with using a longitudinal resonant bar method
at the frequencies of 1–20 KHz in the range 0.01–10
mstrain and only some of them through a pulse transmission
technique at frequency of about 1 MHz in the same strain
range. Data of these studies show that the increase in strain

amplitude causes the decrease in wave velocity and the
increase in attenuation. There are also some facts that show
the contrary situation when the increase in strain amplitude
leads to the increase in wave velocity and the decrease in
attenuation [Johnston and Toksoz, 1980a; Mashinskii et al.,
1999; Mashinskii and D’yakov, 1999; Mashinskii, 2004;
Zaitsev et al., 1999]. This is supported by data of the
indirect experiments in which both the increase and the
decrease in modulus with stress were detected; it was
supposed that these dependences were due to microplastic
process in rocks [Mashinsky, 1994; Mashinskii, 2001,
2005b].
[3] A subsequent study with the use of the pulse trans-

mission technique in the restricted amplitude-frequency-
pressure space (the strain range 0.3–3 mstrain, the frequency
band 0.4–1.4 MHz, constant pressure and temperature)
showed some unusual effects. Variation in amplitude in the
range 1–3 mstrain causes both a decrease and an increase inVp

and Vs in Madra dolomite under constant uniaxial stress up to
60 MPa [Mashinskii, 2004]. A significant decrease in wave
attenuation due to an increase of amplitude in the range 0.3–2
mstrain is detected in sandstone and smoky quartz under
confining pressure of 20 MPa in the band of 0.4–1.4 MHz
[Mashinskii, 2005a].
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[4] The frequency dependencies of wave attenuation in
rocks are usually studied at constant strain amplitude. In the
amplitude-frequency-pressure space indicated above, these
characteristics, for dry and saturated sandstones, look like
linear functions having a relaxation peak [Winkler and
Plona, 1982; Winkler, 1983, 1985; Spencer, 1981]. Relax-
ation peaks were also detected in a clay-containing sand-
stone [Tutuncu et al., 1994a] and even in lucite [Prasad and
Manghnani, 1997]. A joint consideration of the effect of
strain amplitude and frequency in the same phase space
revealed an unusual influence of variable strain amplitude
on the relaxation spectra of attenuation [Mashinskii, 2006,
2007]. Variation in strain amplitude causes the shift of the
attenuation peak in the frequency domain, the change in the
width of relaxation peak, and others.
[5] A study of wave attenuation with taking into account

the joint influence of strain amplitude and frequency factors
is of interest not only as a scientific problem. New effects
can be useful to improve the diagnostic methods of solving
applied problems of material science, acoustic logging,
seismic prospecting and others [Dvorkin et al., 2003;Mavko
and Dvorkin, 2005; Zaitsev and Matveev, 2006].
[6] The paper presents an experimental study of the

influence of strain amplitude on the relaxation spectra of
wave attenuation in the intact, fractured and smoky quartz.
This work has been performed in the development of my
previous works [Mashinskii, 2006, 2007]. A distinctive
feature of this work from the previous ones dealing with
polycrystals is the joint study of the strain amplitude and
frequency effects in single crystals of different types.

2. Experimental Configuration and Methodology

[7] The experiments were conducted with using the pulse
transmission technique at varying strain amplitude in the
range (0.3–2.0) mstrain under constant confining pressure
and ambient temperature. Three types of quartz (intact,
fractured and smoky) were used. Quartz was taken for the
study because sandstone as a petroleum-gas reservoir rock
consists mainly of quartz. As expected, quartz is one of
‘‘simpler’’ natural materials. Anelastic characteristics of a
such solid prove useful for understanding the behavior of
more complicated materials.
[8] The sample is a bar carved from a natural druse.

Quartz does not have subgrains. There are free dislocations
and heterogeneities in the form of pores and inclusions.
Sizes of pores reach 200 mm, and they are filled by firm-
phase material in the form of debris and angular fragments.
Chemistry of inclusions in the fractured quartz is similar
(SiO2) and smoky quartz contains many chemical elements.
The density of heterogeneities and defects is high. Intact
quartz is optically transparent and the fractured quartz is
optically opaque. Crystallographic orientation for intact and
fractured quartz crystals within the apparatus is the same
and smoky quartz has arbitrary orientation. The sample is a
cylinder of 2 cm in length and 4 cm in diameter. The density
of quartz is 2.6 g cm�3.
[9] The experimental configuration is shown in Figure 1a.

A pulse transmission type technique is used. The transducer/
sample assembly is the identical apparatus as used by Jones
[1995] and Winkler [1983]. It is three-layer model. The first
and third layers are of cylinder form and are made of beryllic

bronze. It provides the identical reflection of waves on
sample boundaries. The first layer performs a role of the
delay line and the third layer is the acoustic load. The rock
sample is between these layers. Excitation and reception of
ultrasonic pulses (f� 1MHz) are carried out by means of the
piezoelectric elements that are rigidly fixed on the acoustic
delay layer. The transducer is polarized on a compressional
and shear wave. Each transducer is combined as the source-
receiver’s pair providing the excitation and reception of P or
S wave. The confining pressure of 10 MPa provides a
constancy of contact conditions on borders of the layer. Jones
[1995] showed that measurements of Q with using this
technique can be made reliable for confining pressure higher
than �5 MPa since, in this case, the degree of coupling
between the rock sample and buffer rods is sufficient for
providing a stiff contact. Nevertheless, the reflection method
for measuring the nonlinear properties of rocks requires for
the buffer rods to be in a welded contact with the rock sample.
Therefore, we used the fluid couplant at all interfaces.
Spencer [1981] showed also that a thin film (for example,
the epoxy) for the bond (<0.1 mm) has a negligible effect on
the measurements. Interference from sidewall reflections due
to finite size of the samples is to be negligible above 0.5MHz
[Jones, 1995]. As shown by Winkler and Plona [1982], data
below 400 kHz should be discarded because of uncorrected
diffraction effects. The same advice is given by Stewart et al.
[1983]: the lower end of frequencies should be restricted to
the frequencies above �0.4 MHz to avoid problems associ-
ated with ultrasonic beam diffraction. Therefore, we used the
frequency band Dfmin-max = 0.4–1.4 MHz for study the
relaxation spectra of attenuation. Frequency characteristics
of attenuation are determined using spectral ratio method and
graphed for every strain-amplitude level.
[10] The attenuation is calculated by using the relation

[Winkler, 1983]

Q�1 ¼ aV=8:686pf ¼ al=8:686p; ð1Þ

where a is the attenuation coefficient in dB m�1, V is the
phase velocity in m s�1, and f is the frequency in Hz. The
value of a is calculated using the relations [Winkler and
Plona, 1982]

aðwÞ ¼ 8:686

L
ln

R23j jAtopðf Þ
R12j jAbotðf Þ

ð1� R2
12ðf ÞÞ

� �

; ð2Þ

where L is twice the sample thickness (in m), Atop(f) is the
Fourier magnitude of the reflected pulse from the front of
the sample (top buffer/sample interface), Abot(f) is the
Fourier magnitude of the reflected pulse from the back face
of the sample (bottom sample/buffer interface), R12(f) is the
reflection coefficient at the interface between the coupling
buffer and the sample, and R23 is the reflection coefficient at
the interface between the sample and the backing buffer. In
our case, the coupling and backing buffers are identical
(beryllic bronze), and, therefore, R12(f) = �R23(f). The
coefficient R(f) is calculated as

Rðf Þ ¼ rrVrðf Þ � Vbrbðf Þ
rrVrðf Þ þ rbVbðf Þ

; ð3Þ
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Figure 1. (a) The experimental configuration. (b) and (c) Fourier spectra of the incident (solid line) and
the second reflected (dashed line) pulse of compressional (Figure 1b) and shear (Figure 1c) wave for
maximum strain amplitude in the intact, fractured, and smoky quartz.
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where rr, rb are the densities and Vr(f), Vb(f) are the
velocities in the sample and the beryllic bronze buffer rod,
respectively.
[11] Measurements are conducted at a varying strain

amplitude over the closed cycle under all other conditions
being invariable. The amplitude change is discrete from the
minimum to the maximum and then back to the minimum:
emin = e1! e2! � � � ! emax = e6! � � � ! e1, namely, e1 =
0.3, e2 = 0.5, e3 = 1.0, e4 = 1.3, e5 = 1.7, and e6 = 2 (10�6,
i.e., microstrain). Thus the closed cycle (e1 ! e6 ! e1)
includes 11 amplitude magnitudes (six upward and five
downward). The measurement of attenuation is made at
each amplitude level. The attenuation spectra are calculated
for each frequency within the bandwidth of the pulse for all
strain amplitudes.
[12] An accurate estimation of strain amplitude is diffi-

cult. First, we make a rough estimate using expression
[Johnson et al., 1996]: eM = heit = 2h�uit/L0w2, where h�uit
is time-averaged acceleration, w is the angular frequency,
and L0 is the bar length at rest. Second, for the pulse
propagation, the strain amplitude is estimated relative to
the wavelength l instead of the bar length L0. Then: eM =
v/V = 2pu/l, where v is a particle velocity. The strain
calculated from both formulas is approximately the same.
The displacement u was estimated using the transmission
coefficient of piezoelectric transducer at the source voltage.
The strain interval is approximately 10�7–10�6. In this
work, an accurate estimate of strain amplitude is not
obligatory: an order of magnitude is important. Relative
change of the attenuation with increasing strain amplitude
(under other conditions being constant) is studied.

3. Results

3.1. Fourier Spectra

[13] P and S wave Fourier spectra of reflections from the
front and back faces of the sample (its top and bottom
interfaces) in the intact, fractured and smoky quartz are
presented in Figures 1b and 1c. To study the influence of
strain amplitude on P and S waves, the spectra Atop

P , Abot
P ,

Atop
S , Abot

S are plotted for varying strain amplitude values.
The upward (e1 ! e6) and downward (e6 ! e1) Fourier
curves practically coincide. For simplification, here are
shown only the upward spectra for the maximum strain
amplitude. A dominant frequency of the pulse is ftop

P =
0.923 MHz for P wave, and ftop

S = 0.877 MHz for S wave.
[14] P wave Fourier spectra, Abot

P (f) together with Atop
P (f),

are presented in Figure 1b. For the intact and fractured
quartz, they are simpler in comparison with those in the
smoky quartz. A dominant frequency, fbot

P , changes with
increasing strain amplitude. In the intact quartz, fbot

P is
higher than ftop

P for all strain amplitudes. The same situation
takes place in the fractured quartz, except for the minimal
strain amplitude. In the smoky quartz, fbot

P is essentially
lower in comparison with ftop

P . The increase in fbot
P owing to

increasing strain amplitude (in the range e1–e6) is 6%, 13%, and
13% for the intact, fractured and smoky quartz, respectively.
[15] S wave Fourier spectra, Abot

S (f) with Atop
S (f), are

presented in Figure 1c. For the intact quartz, the spectrum
is simple and a dominant frequency is practically constant.
For the fractured and smoky quartz, the spectra are more
complicated. In the fractured quartz, fbot

S is much lower than

ftop
S . The spectrum in the smoky quartz has a minor
maximum.

3.2. Relaxation Spectra

[16] The dependences of the P wave attenuation in quartz
as a function of frequency for the six upward strain
amplitudes, Qp

�1(f, je1–6jconst), are shown in Figure 2a.
These are the relaxation spectra of different curve form in
the range 0.4–1.4 MHz. The significant segment of the
curve Qp

�1(f, jenjconst) around ftop, looks in the intact and
fractured quartz as nearly a linear dependence Qp

�1 � f �1.2.
The relaxation spectrum in the smoky quartz contains the
attenuation peak on the frequency nearby fatt-peak =
0.923 MHz. The increase in strain amplitude moves a peak
toward the smaller attenuation and higher frequencies. The
decrease in attenuation reaches 15%, the displacement in
frequency is small. In the intact and fractured quartz, the
strain amplitude does not cause the displacement of the
relaxation curve, and therefore, these curves, for principal
strain amplitudes (e2–e6), coincide.
[17] The dependences of S wave attenuation in quartz as a

function of frequency Qs
�1(f, je1–6jconst) for the six upward

strain amplitudes are presented in Figure 2b. The relaxation
spectrum in the main presents a straight line as Qs

�1 �
f �0.84. The relaxation spectra in the fractured and smoky
quartz contain the main attenuation peak on fatt-peak1 = 0.815
and 0.692 MHz and a minor peak on fatt-peak2 = 1.23 and
1.169 MHz, respectively. Strain amplitude practically does
not influence on the relaxation spectrum in the intact quartz.
Relaxation curve in the fractured quartz with increase in
strain amplitude moves down toward smaller attenuation
and lower frequencies. In the smoky quartz, the increase in
strain amplitude leads to the displacement of the peak
toward smaller attenuation and higher frequencies.

3.3. Influence of Strain Amplitude on Attenuation
Parameters

[18] P and S wave velocities practically do not depend on
strain amplitude in the given amplitude range (Figure 3).
The exception is the P wave velocity in the smoky quartz.
Here a small decrease (of about 1%) is observed in the wave
velocity with increasing strain amplitude.
3.3.1. Attenuation on Top Reflection Frequency
[19] P and S wave attenuations versus strain amplitude

Qp
�1(e), Qs

�1(e) for the top reflection frequency (‘‘incident’’
frequency) under a confining pressure of 10 MPa are
presented in Figure 4. The P wave attenuation in the smoky
quartz is 2 times greater than that in the fractured and intact
quartz: Qp

�1hsmoi � Qp
�1hfrai > Qp

�1hinti. The attenuation
in the intact and fractured quartz does not depend on strain
amplitude. The attenuation in the smoky quartz decreases
with the increase in strain amplitude by 15%. The S wave
attenuation in the fractured quartz is greater than in the
smoky quartz and especially in the intact quartz: Qs

�1hfrai >
Qs
�1hsmoi > Qs

�1hinti. The increase in strain amplitude
causes the decrease in attenuation in the intact, fractured
and smoky quartz by 5%, 6%, and 12%, respectively.
3.3.2. Peak Attenuation
[20] As stated above, the individual relaxation spectra

have one-two peak and one-two minimum. The first min-
imum is at the left, and the second minimum is to the right
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of the first peak. The strain amplitude causes changes in the
values of peak attenuation (the relaxation strength D) and
attenuation minimum. Figure 5 shows P wave peak atten-
uation as functions of strain amplitude, QP-peak1

�1 (e), for the
smoky quartz. The increase in the strain amplitude causes
the decrease in Qp-peak1

�1 up to 15%. Figure 5 also shows

S wave peak attenuations as functions of strain amplitude,
QS-peak1
�1 (e), for the fractured and smoky quartz. The attenu-

ations QS-peak1
�1 hfrai and QS-peak1

�1 hsmoi monotonically de-
crease with increasing strain amplitude. The range of
deviations in the attenuation values is about 6%. The
dependence QS-peak2

�1 hsmoi(e) is practically absent.

Figure 2. (a) Compressional wave attenuation in the intact, fractured and smoky quartz as a function of
frequency for the six upward strain amplitude. (b) Shear wave attenuation in the intact, fractured, and
smoky quartz as a function of frequency for the six upward strain amplitude.
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3.3.3. Peak Frequency
[21] The variation in strain amplitude causes the displace-

ment of the peak frequency fatt-peak. Changes in peak
frequency are small, but it is necessary to mention this fact.
3.3.3.1. Fractured Quartz
[22] The P wave relaxation peak (see Figure 2) exists only

on the strain amplitudes~e1, e
 
1 and~e2, e

 
2, and it is absent on

greater amplitudes. The peak frequency on e2 is lower than
on e1. In this connection, one can be surmised that the
relaxation peak for greater amplitudes is situated on lower
frequencies outside the given frequency range. Variation in
the strain amplitude causes a displacement of S wave peak
only on e3 but on the other amplitudes the shift is absent. A
jump in fatt-peak occurs toward lower frequencies when the

Figure 4. Compressional (solid line) and shear (dashed line) wave attenuation on the incident frequency
in the intact, fractured and smoky quartz as a function of the upward and downward strain amplitude
Polynomial approximations for the three curves are made.

Figure 3. Compressional (solid line) and shear (dashed line) wave velocity in the intact, fractured, and
smoky quartz as function of the upward and downward strain amplitude (e1–e6–e1). Polynomial
approximations for P wave velocity in the smoky quartz are made.
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amplitude increases and toward higher frequencies when it
decreases. The upward and downward peak frequencies
practically coincide.
3.3.3.2. Smoky Quartz
[23] For P wave, the jump in fatt-peak occurs toward high

frequencies with the increase in amplitude and toward low
frequencies with its decrease (see Figure 2). The upward
and downward peak frequencies completely coincide. This

is an evidence of the high reliability of the result. There are
two peaks in the relaxation spectra of S wave attenuation.
The frequency fatt-peak1 slightly varies and the frequency
fatt-peak2 remains invariable with variation in strain amplitude.
3.3.4. Width of Relaxation Peak
[24] Variation in the strain amplitude causes diverse

changes in the width of the relaxation peak in the fractured
and smoky quartz. Figure 6 shows the ratio of the peak width

Figure 6. Ratio of the peak width to the peak frequency (Df0.7/fatt-peak) as a function of the upward-
downward strain amplitude of P and S wave in the fractured and smoky quartz. Logarithmic and
polynomial approximations are made.

Figure 5. Peak attenuation of P and S wave in the fractured and smoky quartz as a function of the
upward-downward strain amplitude (e1–e6–e1). Linear and polynomial approximations are made.
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Df0.7 to the peak frequency fatt-peak1 as a function of strain
amplitude: [Df0.7/fatt-peak1](e1–6–1), where Df0.7 is the fre-
quency band at 0.7 peak height, (0.7  QP,S-peak1

�1 (fatt-peak1)).
The dependence [Df0.7/fatt-peak1](e1–6–1) for S wave in the
fractured quartz is the domelike curve with deviations of
about 6%. The ratio Df0.7/fatt-peak1 for P wave in the smoky
quartz monotonically increases with increasing strain
amplitude; the increase reaches 50%. The ratio [Df0.7/
fatt-peak1](e1–6–1) for S wave in the smoky quartz is the
concave curve; the decrease of this ratio equals 28% in the
given strain amplitude range.

4. Discussion

[25] The experiments showed that behavior of quartz
under the influence of strain amplitude is not such simple
as it may seem. The strain amplitude-frequency character-
istics of attenuation in the intact quartz are more simple in
comparison with those for the fractured and smoky quartz.
The wave attenuation in quartz obeys the following rule:

Q�1p;s / ke�~n; ð4Þ

where k is a dimensionless coefficient and ~n � 1. The index
~n determines the steepness (the slope of the line) of
attenuation variation with amplitude. The fractured and
smoky quartz show the decrease in wave attenuation with
the increase in strain amplitude (~nmax � 0.076), and at the
same time, the intact quartz shows a relatively simple
reaction, i.e., strain amplitude independence (~n � 0). Such
behavior predicts the hybrid relaxation-hysteresis process
[Arzhavitin, 2004; Mashinskii, 2006] and explains the strain
amplitude dependence of attenuation by rock microplasticity.

[26] Microplastic process is a potential cause for the
amplitude-dependent relaxation time(s). The relaxation
spectra of wave attenuation in the imperfect crystal also
undergo a modification under the influence of variable
amplitude which causes the change in the relaxation
strength, in the width of relaxation peak and the displace-
ment of this peak in coordinates Q�1 and f. It occurs
because the strain amplitude governs the relaxation time
and parameters of relaxation peak [Mashinskii, 2006]. Intact
quartz is characterized by the linearity of the frequency
characteristic and the absence of relaxation peak at least in
this frequency range. It is significant that there is sameness
in the amplitude effects in the imperfect crystal and for
example in sandstone (compare Figure 2 with Figure 7
[from Mashinskii, 2007, Figure 6]). These facts indicate
hereto that, in all probability, in both cases the defectiveness
determines the anelasticity and nonlinearity. Quartz can
contain diverse defects including lattice defects. Anisotropy
also brings difference in the wave velocities and attenuations.
The defects, for example, with triclinic symmetry also can
potentially lead to anelastic behavior at MHz frequencies.
[27] The assumption about presence of defects in quartz

was examined with the help of scanning electron micros-
copy (SEM). Thin quartz sections were studied on
SEM ‘‘LEO1430VP’’ equipped by energy spectrometer
‘‘OXFORD.’’ This study showed that the intact quartz is
really homogeneous and does not contain structural defects in
the form of pores, cracks and inclusions which are accessible
for observation by this apparatus. Surveying with the help of
backscattered electrons established that the fractured and
smoky quartz have heterogeneities in the form of numerous
pores and inclusions. Sizes of pores are within 20–200 mm.
Pores are filled by firm-phase inclusions, and it is highly

Figure 7. Shear wave attenuation in the dry and saturated sandstone as a function of frequency for the
six upward strain amplitudes (e1–e6). A confining pressure is of 20 MPa (taken from Mashinskii [2007]).
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probable that they contain a gaseous-liquid phase. The firm-
phase inclusions of pores in the fractured quartz consist of
quartz (SiO2), i.e., they have the same chemical constitution
as the matrix (see Figure 8a). As distinct from the last, the
firm-phase inclusions of pores in the smoky quartz contain
also other elements: K, Ca, Al, Na, Fe, Ti (see Figure 8b).
Inasmuch as the smoky quartz is more heterogeneous than the
fractured quartz and a fortiori the intact quartz, therefore, its

anelastic behavior noticeably differs from that of the others.
The complementary study with the help of X-ray spectrom-
etry confirms the greater defectiveness of the smoky quartz in
comparison with the others. At least, these experiments
strengthen the supposition about belonging of defects and
heterogeneities to the reason of anelasicity and nonlinearity
in the imperfect quartz.
[28] It is necessary to note that an atypical decrease in

attenuation versus strain amplitude according to equation (4)
is possible theoretically and has definite grounds. The
ambiguous dependencies of modulus (wave velocity) on
strain obtained from different theoretical models [Guyer et
al., 1995; Guyer and Johnson, 1999; Gusev et al., 1998]
indicate the possibility for such behavior. Besides the indirect
prerequisites, there is a theoretical work [Arzhavitin, 2004]
that predicts not only an increase but a decrease in wave
attenuation with increasing strain amplitude.
[29] The relaxation effects governed by strain amplitude

require the explanation. The attenuation peak in rocks is
usually related to the local fluid flow in the grain boundary
space [Murphy et al., 1986]. Systems with solid-solid phase
transitions under the influence of strain amplitude can also
induce a reaction from one phase to another, causing stress
relaxation and an attenuation peak. For example, in the
pore-to-pore relaxation model, the peak can be shifted both
toward the lower and higher frequencies owing to variation
in saturation [Taylor and Knight, 2003]. A shift of relaxa-
tion peak in dependence on frequency and strain amplitude
predicts a nonhysteretic dissipation mechanism described
by Zaitsev and Sas [2000] and Zaitsev and Matveev [2006].
Transformation of the attenuation peak in the amplitude-
frequency domain can be explained also using the classical
expression for attenuation given as

Q�1 wð Þ ¼ D
wt

1þ wtð Þ2
; ð5Þ

where w is the angular frequency, and t is the relaxation
time given by 1/2pfatt-peak, and D is the relaxation strength.
The shifts of peak in Q�1 and f directions occur because of
variations in D and t induced by strain amplitude
[Mashinskii, 2007]. The relaxation strength D in (5) for
compressional and shear waves is determined as

Dp ¼
Mu �Mr

ffiffiffiffiffiffi

Mr

p
Mu

;Ds ¼
Gu � Gr

ffiffiffiffiffiffi

Gr

p
Gu

; ð6Þ

where Mu, Gu are the high-frequency compressional and
shear modulus, respectively; Mr, Gr are the low-frequency
compressional and shear modulus, respectively. The con-
nection between Ds and by moduli Gu, Gr is given by the
expression [Jackson et al., 2002]

Gr=Gu ¼ 1þDsð Þ�1: ð7Þ

Variation of strain amplitude causes the change in the
stiffness difference Gu � Gr that leads to the change in D

and the peak width.
[30] The strain amplitude-dependent shift of the peak

frequency can be caused by the change of viscosity and
the relaxation time [Mashinskii, 2006]. In the case of the

Figure 8. SEM in the (a) fractured and (b) smoky quartz.
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solid-solid boundary, a peak frequency is determined by the
relaxation time te [Jackson et al., 2002]

te ¼
ghb
Guab

; ð8Þ

where hb is the grain boundary viscosity, Gu is the relaxed
shear modulus, ab = d/d is the aspect ratio of the grain
boundary region of thickness d for grain size d, and g is the
numerical factor of order 1. The variation in amplitude leads
to the changes in hb, te, and fatt-peak. The grain boundaries in
quartz are absent but there are the firm-phase inclusions in
pores, which possibly play a part similar to the grain
boundaries. In spite of this, it is difficult to draw a well-
defined conclusion about this effect without an additional
study. In essence, the fact of relaxation process in quartz
suggests the presence therein of heterogeneities and defects.
[31] The change in the peak width can also be obtained

with the help of the Fuoss-Kirkwood expression [Cordero et
al., 2003] that extends the Debye formula (5) by using, for
the description of a process, a spectrum of relaxation times

Q�1 w; Tð Þ ¼ D
1

wtð Þaþ wtð Þ�b
; ð9Þ

where a = b < 1. The parameter a controls the peak
broadening in the low-temperature region, where wt < 1,
and b does the same in the high-temperature region. In our
case, the expression for attenuation (9) can be rewritten in a
general formula

Q�1 w;~eð Þ ¼ D ~eð Þ 1

wtð Þ~aþ wtð Þ�~b
; ð10Þ

where ~e is the variable strain amplitude, D(~e) is the strain
amplitude-dependent relaxation strength, ~a and ~b are the
amplitude-dependent parameters. The relaxation strength
D(~e) is responsible for the value of peak attenuation. The ~a,
~b parameters control the broadening and narrowing of width
of attenuation peak thanks to the variable strain amplitude.
Such physical process supposes that for the each strain
amplitude exists the defined relaxation time and ~a, ~b
parameters. Amplitude variation causes the change in the
rock characteristics, for example, in viscosity and leads to
the variation of relaxation spectrum. It explains the
broadening of peak width with increasing strain amplitude
that takes place for P wave attenuation in the smoky quartz
(see Figure 6).

5. Conclusion

[32] This study has shown that there are many sided
aspects of the strain-amplitude influence on the modulus
and the relaxation spectra of attenuation. On the one hand,
the simplicity of strain amplitude-frequency characteristics
of attenuation in the intact quartz convinces that various
defects are in charge of anelastic effects. On the other hand,
these characteristics show that the relatively simple in
structural respect such a solid as quartz behaves in many
respects in the same way as the complex structure rock
[Mashinskii, 2007]. We see that the similar decrease in

attenuation under increasing strain amplitude takes place in
both cases. These results give grounds to suppose that real
quartz presented in many rocks as a main rock-forming
mineral can manifest sufficiently anelastic properties even
under small strain amplitudes. It can be confirmed by an
analogy with olivine-olivine grain boundaries (a region
�1 nm wide) that are able to produce an inelastic attenuation
peak [Faul et al., 2004]. The multifarious behavior of peak
frequency in dependence on strain amplitude is a new
problem for further researches. The amplitude effect is most
pronounced in the change in the width of attenuation peak.
This fact should be taken into account by the geophysicists
specializing on development of seismic methods for search
of oil and gas deposits. The defined results have been
achieved in this direction using the relaxation effects of Qp

and Qs from sonic log data for the purpose of distinction of
nonreservoir rock from reservoir rock [Dvorkin et al., 2003;
Mavko and Dvorkin, 2005]. This problem affects the little-
known inelastic processes of the small-amplitude wave
propagation. The new knowledge about nonlinear-inelastic
process during wave propagation will help in discovery of
new diagnostic indications permissive to increase the effi-
ciency of seismic method.
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